The generator matrix

 1  0  1  1  1  X  1  1 X^2  1  1  0  1  1 X^2+X  1  1 X^2+X  1  1 X^2  1  1  0  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^2  0 X^2+X  X X^2  0 X^2+X  X
 0  1  1 X^2 X+1  1  X X^2+1  1  0  1  1 X^2+X X^2+X+1  1 X^2+X X^2+X+1  1 X^2 X+1  1  X X^2+1  0  1 X^2  0 X^2  0 X^2+X  X X^2+X  X X^2+X+1 X+1 X^2+X+1 X+1 X^2+1  1 X^2+1  1  1  1  1  1  1  1  1  1
 0  0  X X^2+X X^2 X^2+X  X  0  X X^2 X^2+X X^2  0  X  0 X^2 X^2+X X^2  X  0 X^2+X X^2+X X^2  X  X X^2 X^2+X  0  X X^2+X X^2  X  0 X^2 X^2+X  0  X X^2+X X^2  X  0 X^2 X^2+X X^2+X X^2  0  X  X  X

generates a code of length 49 over Z2[X]/(X^3) who�s minimum homogenous weight is 48.

Homogenous weight enumerator: w(x)=1x^0+100x^48+64x^49+80x^50+8x^52+3x^64

The gray image is a linear code over GF(2) with n=196, k=8 and d=96.
As d=96 is an upper bound for linear (196,8,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 8.
This code was found by Heurico 1.16 in 0.0412 seconds.